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abstract: Polyploidy—the increase in the number of whole chro-
mosome sets—is an important evolutionary force in eukaryotes. Poly-
ploidy is well recognized throughout the evolutionary history of
plants and animals, where several ancient events have been hypothe-
sized to be drivers of major evolutionary radiations. However, fungi
provide a striking contrast: while numerous recent polyploids have
been documented, ancient fungal polyploidy is virtually unknown.
We present a survey of known fungal polyploids that confirms the ab-
sence of ancient fungal polyploidy events. Three hypotheses may ex-
plain this finding. First, ancient fungal polyploids are indeed rare, with
unique aspects of fungal biology providing similar benefits without
genome duplication. Second, fungal polyploids are not successful in
the long term, leading to few extant species derived from ancient poly-
ploidy events. Third, ancient fungal polyploids are difficult to detect,
causing the real contribution of polyploidy to fungal evolution to be
underappreciated. We consider each of these hypotheses in turn and
propose that failure to detect ancient events is the most likely reason
for the lack of observed ancient fungal polyploids.We examine whether
existing data can provide evidence for previously unrecognized ancient
fungal polyploidy events but discover that current resources are too
limited. We contend that establishing whether unrecognized ancient
fungal polyploidy events exist is important to ascertain whether poly-
ploidy has played a key role in the evolution of the extensive complex-
ity and diversity observed in fungi today and, thus, whether polyploidy
is a driver of evolutionary diversifications across eukaryotes. Therefore,
we conclude by suggesting ways to test the hypothesis that there are un-
recognized polyploidy events in the deep evolutionary history of the
fungi.
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Introduction

Polyploidy, the increase in the number of whole chromo-
some sets, is an important evolutionary force observed through-
out the eukaryotic domain of life (Otto and Whitton 2000;
Mable 2003; Albertin and Marullo 2012). Polyploidy results
from increases in chromosome sets due to whole-genome
duplication (autopolyploidy) as well as mergers between
different species (allopolyploidy) and can result in instan-
taneous speciation. It creates opportunities for adaptive evo-
lution by providing high levels of genetic redundancy (Otto
and Whitton 2000; Mable 2003; Comai 2005; Albertin and
Marullo 2012) and is well documented in plant and animal
evolutionary histories (Thompson and Lumaret 1992; Otto
and Whitton 2000; Taylor et al. 2003; Blomme et al. 2006).
Polyploidy has been linked to major evolutionary radiations
(Comai 2005; Van de Peer et al. 2009) and has been proposed
to help adaptation to stressful environments (Vanneste et al.
2014a, 2014b; Soltis et al. 2015). However, while polyploidy
is believed to have played important roles in the evolution
of plant and animal lineages, the other major multicellular
eukaryotic kingdom—the fungi—poses a puzzle. Although
not as well documented as in other systems, polyploidy is ob-
served in many fungi, yet there is little evidence that poly-
ploidy has played a major role in the kingdom’s deep evolu-
tionary history. Does this imply that ancient polyploidy
(paleopolyploidy) events were not important in the evolu-
tion of fungi or merely that we have not discovered traces
of these events? Here, we briefly review the role that poly-
ploidy has played in the evolution of nonfungal eukaryotic
lineages. We then describe the existing literature on poly-
ploidy in fungi, which underscores the lack of known an-
cient fungal polyploids. We look to existing data to deter-
mine whether a clear pattern of previously unrecognized
ancient fungal polyploidization events is present but find
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Missing Ancient Fungal Polyploids 603
them insufficient. Therefore, we conclude by outlining ways
that the community can move forward to address this im-
portant biological question.
Polyploidy Is an Important Evolutionary
Force in Eukaryotes

Polyploidy in plants is well recognized, with investigations
over many decades identifying a large number of polyploid
plant species (Stebbins 1950; Thompson and Lumaret 1992;
Wood et al. 2009). Indeed, it is now estimated that 15% of
angiosperm and 31% of fern speciation events are associated
with an increase in ploidy (Wood et al. 2009). Polyploidy
is particularly common among plants that have been domes-
ticated by humans (Renny-Byfield and Wendel 2014), sug-
gesting that our ancestors took advantage of the heterosis
(hybrid vigor) exhibited by some polyploids as well as the in-
creased cell size that frequently contributes to the larger or-
gans (hence larger seeds and fruits) found in polyploid plants.
In addition, the ability to create artificial polyploids (syn-
thetic polyploids) has put plants at the vanguard of our un-
derstanding of the molecular events that result from poly-
ploidy (Skalická et al. 2003; Eilam et al. 2008; Szadkowski
et al. 2010; Renny-Byfield and Wendel 2014).

Polyploidy has also been documented in numerous eu-
karyotic taxa outside of plants. The amphibians (Otto and
Whitton 2000;Mable et al. 2011) and fishes (Otto andWhit-
ton 2000; Taylor et al. 2003; Mable et al. 2011) are notable
for containing many successful polyploid lineages. Further-
more, polyploidy has been documented in birds (Otto and
Whitton 2000), two species of mammal (Gallardo et al. 1999;
Mares et al. 2000), crustaceans (Salemaa 1984; Weider 1987;
Dufresne andHebert 1997; Otto andWhitton 2000), insects
(Lokki and Saura 1980; Otto and Whitton 2000), and mol-
lusks (Piferrer et al. 2009). Polyploidy can be induced in
animals, with synthetic polyploids in fish and shellfish being
created for increased food production (Piferrer et al. 2009). In
addition, the Chromalveolata contains several polyploid lin-
eages (Green and Dick 1972; Coyer et al. 2006; Albertin
and Marullo 2012), and there is evidence in the well-studied
fungus-like Oomycota crop pathogen genus Phytophthora
for recent (Tooley and Therrien 1987; Sansome et al. 1991;
Ioos et al. 2006) and perhaps ancient (Martens and Van de
Peer 2010; but see van Hooff et al. 2014) polyploidizations.
Moreover, polyploidy appears to be commonplace in dia-
toms (Koester et al. 2010), there are two ancestral polyploi-
dizations in the excavate Giardia lamblia (Sun et al. 2010),
and the ciliate Paramecium exhibits polyploidy (Aury et al.
2006). Therefore, far from being a phenomenon restricted
to just a few lineages with unusual biology, polyploidy seems
to have occurred repeatedly across a diverse range of eukary-
otic taxa.
Ancient Eukaryote Polyploidy

Examples where polyploidy preceded major historical radia-
tions of taxa are key pieces of evidence supporting arguments
that widespread polyploidy is observed because it provides
a rich source of redundant genetic material to fuel rapid
adaptive evolution (Ohno 1970; Selmecki et al. 2015). The
best evidence for polyploidy-associated radiations comes
fromwell-characterized ancient polyploidy (paleopolyploidy)
events in a number of species-rich plant and vertebrate line-
ages, where the polyploidy events range from a few to hun-
dreds of millions of years in age. Correlations between these
ancient polyploidy events and higher diversification rates in
the lineages they produce—such as in certain angiosperm
lineages (Soltis et al. 2009) and cyprinine fishes (Zhan et al.
2014)—have further strengthened the case for an associa-
tion between polyploidy and diversification.
In plants, two major paleopolyploidization events are as-

sociated with evolutionary diversifications (fig. 1): one in
the common ancestor of all seed plants at around 350 Ma
and the other in the common ancestor of all angiosperms
at around 235 Ma (Jiao et al. 2011). In addition, numerous
paleopolyploidy events in angiosperm taxa subsequent to
these two very ancient polyploidizations have been docu-
mented (Bowers et al. 2003; Tang et al. 2010; Wendel 2015).
In particular, stressful environments appear to increase the
incidence of polyploidy in plants, with some of themost suc-
cessful plant lineages originating with ancient polyploi-
dizations at the time of the Cretaceous-Paleogene boundary
(Vanneste et al. 2014a, 2014b; Soltis et al. 2015). Vertebrates
also feature two major ancient polyploidization events: one
present at the base of all vertebrates and a second shared
by the jawed vertebrates (gnathostomes; fig. 1). These an-
cient vertebrate polyploidizations occurred at around 600
and 450 Ma, respectively (Vandepoele et al. 2004; Dehal and
Boore 2005; Blomme et al. 2006; Nakatani et al. 2007), and
are proposed to have driven evolutionary innovation in these
groups (Ohno 1970). In addition, a third polyploidization
event is thought to have occurred in the common ancestor
of all teleost fishes at approximately 320 Ma (Taylor et al.
2003; Vandepoele et al. 2004; Nelson 2006). In sharp con-
trast, however, only two paleopolyploidy events are known
in fungi, and both are relatively shallow events in the fungal
tree of life (fig. 1).
Importantly, however, there is not universal agreement

that polyploidy is a driver of diversification, with some stud-
ies finding no relationship or even a negative relationship
between polyploidy and diversification (Santini et al. 2009;
Mayrose et al. 2011; Zhan et al. 2014). Moreover, experi-
mental evolution studies comparing populations of different
ploidy levels find that the original ploidy in a given species is
generally favored (Gerstein and Otto 2009), although most
addressed autopolyploids, not allopolyploids. Finally, poly-
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Missing Ancient Fungal Polyploids 605
ploidy in plants can be explained by a simple ratchet model
of increasing chromosome sets that does not require argu-
ments for selective pressure (Meyers et al. 2006). Therefore,
whether polyploidy plays a necessary and sufficient role in
evolutionary diversification remains unclear. The other ma-
jor eukaryote lineage—the fungi—can potentially provide
additional data to inform this debate, making a better un-
derstanding of the role of polyploidy in fungal evolution-
ary history important not just for understanding the fungi
but also for understanding patterns of diversification more
broadly.
Lack of Ancient Polyploidy Events in Fungi

Fungi are a diverse group of organisms that are a sister taxa
to the animals (Metazoa) and choanoflagellates (Lang et al.
2002; James et al. 2006). They comprise a huge number of
species, estimated to be 1.5 million (Hawksworth 1991; Dea-
con 2006), with the vast majority yet to be described (Black-
well 2011). While morphologically quite simple apart from
their reproductive structures, fungi exhibit enormous diver-
sity in life-history traits, occupying an astonishing range
of ecological niches and habitats (Deacon 2006). They also
have distinctive reproductive strategies. Formany fungi, the
haploid phase dominates their life cycle, and many fungi
have a dikaryotic growth phase that is characterized by the
presence of two different haploid nuclei types (from amating)
in the same cell that have not been fused into a diploid nu-
cleus.Moreover,many fungi appear to lack a sexual stage com-
pletely, and the majority of these asexual species live as hap-
loids. As a consequence, the majority of fungi live in a haploid
nuclear state for most of their life cycle (Deacon 2006).

These unique features mean that the use of the terms
“polyploid” and “hybrid,” which are well defined in the plant
and animal literature, are less clear for fungi. Polyploidy can
be defined as “the heritable condition of possessingmore than
two complete sets of chromosomes” (Comai 2005, p. 836).
However, because fungi are typically haploid for the major
part of their life cycle, a genome doubling in a fungus—thus
creating a diploid—would not be considered a polyploid un-
der this traditional definition, despite the ploidy level differ-
ing from the parents. The fungal literature often refers to
these cases as hybrids (offspring of mating between two dif-
ferent species; Mallet 2007) rather than polyploids. To ac-
commodate fungi into the traditional conceptual framework
of polyploidy, we adopt the following terminology (fig. A1;
figs. A1–A3 available online): hybrids are offspring of two
different species (that may or may not have altered numbers
of chromosome sets). If a hybrid has a heritable increase in
the number of chromosome sets relative to the parents, it
is an allopolyploid, including allodiploids (where two hap-
loid species have merged to produce a diploid). Following
the same logic, we describe intraspecific doublings (or more)
of chromosome sets as autopolyploids, including examples
where a haploid species doubles to a diploid.
Polyploidy has not been well studied in the fungi, despite

the most widely used model fungal species—baker’s yeast
(Saccharomyces cerevisiae)—having a paleopolyploidy event
in its evolutionary history (Albertin and Marullo 2012). To
provide an overview of the current state of fungal poly-
ploidy, we compiled a list that encompasses all 31 different
genera with reported fungal polyploids (app. B; apps. A,
B available online). Although known fungal polyploids are
fewer compared with plants and animals, they are phyloge-
netically widespread (fig. 2; app. B). Interestingly, in parallel
with plants where a large number of domesticated species
are polyploids, several fungi that have been domesticated or
are associated with humans are also polyploids (for a more
detailed discussion, see app. A). However, because the vast
majority of fungal species have not been tested to determine
whether they are polyploid, it is likely that the polyploids en-
compassed by these 31 genera (app. B) are a dramatic under-
estimate of the true number.
When we consider the approximate time of origin of these

documented fungal polyploids, most have resulted from rel-
atively recent events, with only two known examples of an-
cient fungal polyploidy (fig. 3). The first is the iconic example
of yeasts of the genus Saccharomyces (Albertin and Marullo
2012). This yeast paleopolyploidization event has been dated
to about 100 Ma (Wolfe and Shields 1997) and most likely
results froman ancient allopolyploidy event (Marcet-Houben
and Gabaldón 2015). The second example of ancient poly-
ploidization occurs in the zygomycete genus Rhizopus, al-
though whether this was an auto- or allopolyploidy event
is unknown, and the origin has not been dated (Ma et al.
2009; Shelest and Voigt 2014). A striking conclusion from
these observations is that despite infrequent but widespread
observations of recent polyploidy events, there is no evi-
dence of polyploidy events having shaped the deep evolu-
tionary past for the vast majority of fungal species. This is
in sharp contrast to species-rich plant and animal lineages,
many of which have a least one polyploidy event in their
Figure 1: Ancient polyploidization events (paleopolyploidizations) involving genera or higher taxonomic levels are indicated with starbursts
on a cladogram of plant, fungal, and animal relationships. Red starbursts indicate well-characterized paleopolyploidy events, gray starbursts
indicate ancient polyploidizations with uncertainty in taxonomic distribution due to limited numbers of genome sequences in the group, and
blue starbursts indicate proposed ancient polyploidies that are not confirmed. For further information, see appendix A, available online. Seed
plant (S) and angiosperm (A) ancient polyploidies are indicated. Vertebrate ancient whole-genome duplications known as 1R and 2R are
labeled as such, with the fish-specific teleost paleopolyploidization event labeled 3R. Other eukaryotic lineages have been omitted for clarity.



606 The American Naturalist
evolutionary past and some of which have many (fig. 1).
This is not simply a result of the fungi being a small lineage,
since the estimated 1.5 million fungal species (Hawksworth
1991) exceeds the estimated 450,000 angiosperm species
(Pimm and Joppa 2015). Therefore, it appears that the lack
of ancient fungal polyploidy events is a phenomenon that
needs explanation.
Where Are the Missing Fungal Polyploids?

This dissonant picture of polyploidy in fungi—where most
polyploids are recently derived and none appear older than
100 million years, despite fungi having originated approx-
imately 800 million years ago (Taylor and Berbee 2006;
fig. 2)—has three possible explanations. First, ancient poly-
ploidy events were extremely rare and are thus largely absent
from the evolutionary history of fungi. Second, polyploidy
events occurred frequently, but most created evolutionary
dead ends that did not lead to extant lineages. Third, an-
cient polyploidy events made important contributions to
fungal evolution but have largely gone unrecognized. We
address each of these possible explanations.
Ancient Fungal Polyploidy Events Were Rare, and Few
Extant Fungi Have Ancient Polyploid Origins

We suggest that this option is unlikely: recent polyploidy
events have been found in a diverse range of modern fungal
lineages (fig. 2), and there is nothing peculiar to fungi to sug-
gest that polyploidy should have been less common in the
past. Synthetic fungal polyploids have beenmade artificially
(Ishitani et al. 1956; Holliday 1961; Maniotis 1980), with
some synthetic polyploids generated from fungal lineages
that have no known natural polyploids (Kostoff 1946; San-
 Sordariomycetes

 Eurotiomycetes

 Pezizomycetes

 Saccharomycetes

 Taphrinomycetes 
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Figure 2: Major extant fungal lineages are depicted (adapted from Blair 2009). Organization of the four major fungal groups (Ascomycota,
Basidiomycota, zygomycetes, and chytrids) is indicated alongside representative depictions of the four groups: asci fromNeurospora (Ascomycota), a
mushroom (Basidiomycota), a sugar/pin mold (zygomycetes), and a chytrid sporangium with a zoospore. The basal fungal lineages remain poorly
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to have occurred. Red asterisks indicate lineages with the oldest known fungal polyploidy events, Saccharomyces yeasts (Saccharomycetes) and Rhi-
zopus (Mucoromycotina). Solid branches are proportional to time (indicated by the timescale); dotted branches are not.
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some 1946; Day 1972a, 1972b; Cummins and Day 1977).
These observations suggest that the ability to form viable
polyploids is common in fungal lineages and is not restricted
to a few lineages with unusual biology.While chromosome-
based sex determination may be a major barrier to polyploi-
dization in animals (Otto andWhitton 2000), this systemdoes
not occur in fungi. Therefore, no significant barriers appear
to prevent polyploidy in fungi. However, many fungi live as
multinucleated forms, particularly dikaryons (two genomi-
cally different nuclei within the same cell; see fig. A1) formuch
of their life cycle. This ability may circumvent the need for
polyploidy to gain the benefits of combining two separate ge-
nomes. Consequently, it remains conceivable that ancient
fungal lineages favored a multinuclear hybrid state without
forming true polyploids. This phenomenon would produce
short-term advantages but would not produce the long-term
genetic redundancy through which polyploidy is proposed
to drive diversification. Nevertheless, recent fungal polyploids
are still observed, including in groups with multiple indepen-
dent events, suggesting that polyploidy can offer selective
advantages over—or instead of—dikaryotic hybrids.
Ancient Fungal Polyploids Were Evolutionary Dead Ends

It has been argued that polyploidy does not necessarily
provide benefits and instead is often maladaptive, charac-
terized by initial instability, numerous genomic challenges,
and higher extinction rates (McClintock 1984; Comai 2005;
Mayrose et al. 2011). This viewpoint suggests that the rea-
son ancient fungal polyploids are not observed is because
they were evolutionary dead ends. However, the data used
to support this contention come from plant and animal sys-
tems, where ancient polyploidy is well known and has been
linked to evolutionary radiations. A more compelling argu-
ment comes from one of the best-studied fungal genera,
Epichloë. All of the numerous polyploid species from this
group characterized to date are asexual (Moon et al. 2007;
Leuchtmann et al. 2014), and asexual lineages are generally
considered to be evolutionary dead ends (Muller 1964;May-
nard 1978).However, other fungal polyploids, such as the Sac-
charomyces yeasts, are sexual, suggesting that, as with plants
and animals, fungal polyploidy can produce persistent sex-
ual lineages. Fungi have unique properties that may reduce
the potential selective advantages of polyploidy. In particu-
lar, the high level of chromosomal variability, in terms of
both number and structure, that is exhibited by fungi (Co-
vert 1998; Ma et al. 2010; Croll and McDonald 2012; Raf-
faele and Kamoun 2012), uni/parasexuality (Heitman 2010),
and aneuploidy (Tolmsoff 1983)may provide similar benefits
to polyploidy without the potentially deleterious issues that
arise from genomemerger. Therefore it remains possible that
polyploidy did not provide the selective advantages for fungi
Recent Polyploids Ancient Polyploids

Saccharomyces

Rhizopus

Ustilago    Phyllactinia   Saccharomyces
Armillaria    Cryptococcus    Paracoccidioides
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Dekkera   Aspergilllus Saccharomyces
Epichloë   Verticillium Zygosaccharomyces
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Undetermined

Allopolyploids

Undetermined

Autopolyploids

Figure 3: Fungal polyploids are listed by genus as either recent (neo-) or ancient (paleo-) polyploids. Auto- or allo polyploidy is indicated
where known. Only two ancient fungal polyploidy events are known. For further details, see appendix B, available online.
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that it did for other lineages, but thiswould require that extant
fungal diversity has been driven by something other than the
genetic redundancy created by polyploidy.
Ancient Fungal Polyploidy Events Made Important
Contributions to Fungal Evolution but

Remain Largely Unrecognized

There are two primary reasons why polyploidy, particularly
polyploidy events in the deep evolutionary past, might have
gone unrecognized in the fungi. First, karyotypes have long
been a primary form of genomic characterization in plants
and animals, and chromosome counts have commonly been
employed to infer polyploidy events (Maniotis 1980;Mayrose
et al. 2010). However, it is challenging to observe fungal
chromosomes with conventional microscopy due to their
small size and relatively low level of condensation at meta-
phase, as well as the continued presence of the nuclear mem-
brane through most of mitosis in some lineages (Deacon
2006). At present, the favored karyotyping method for fungi
is pulsed field gel electrophoresis, which is a relatively recent
technique, is technically difficult to perform and cannot easily
produce unambiguous chromosome counts. Consequently,
karyotyping has not been widely performed for fungi, and
chromosome counts are not readily available as a relatively
simple avenue for identifying polyploidy. Second, paleopoly-
ploidy events deep in the tree of life are difficult to detect,
requiring multiple supporting lines of evidence and sophis-
ticated genome-scale analyses (e.g., Ma et al. 2009; Marcet-
Houben et al. 2009; Marcet-Houben and Gabaldón 2015).
Such analyses have typically been performed only where
there is prior evidence for ancient polyploidy, such as when
karyotypes indicate a change in chromosome complement
consistent with polyploidy or when numerous syntenic blocks
are observed during genome sequencing. In addition, the
genomic signatures of ancient polyploidy may be more dif-
ficult to detect in fungi, which exhibit rapid and extensive
genome restructuring over short evolutionary time frames
(Croll and McDonald 2012; Raffaele and Kamoun 2012).
The apparent lack of ancient polyploidy in fungi may there-
fore result from a deficit of information used to infer poly-
ploidy. Given this and the prevalence of paleopolyploidy in
plant and animal lineages, we propose that there are a sig-
nificant number of unrecognized paleopolyploidy events in
the deep evolutionary history of fungi.
Can Existing Data Inform the Presence
of Ancient Fungal Polyploids?

Wewonderedwhether there are strong signals of fungal poly-
ploidy in existing data that have simply been overlooked. To
address this, we turned to chromosome count data because
large changes in chromosome number may be indicative of
polyploidy events. While difficult to obtain for fungi, chro-
mosome counts are nevertheless available for a number of
species. We found published chromosome counts for 25 fun-
gal species and modeled the evolution of chromosome num-
ber in these species using a probabilistic framework to iden-
tify potential polyploidization events (described in app. A).
However, while polyploidy was identified for the Saccharo-
myces yeasts as expected, the low proportion of fungi that
have chromosome count data available means that the anal-
ysis has statistical power to detect polyploidy in only a very
small subset of fungal taxa. Therefore, the primary conclusion
from this analysis is that existing chromosome count data are
too limited to test the hypothesis that there are unrecognized
polyploidy events in the deep evolutionary history of the fungi.
Moving Forward

To solve the puzzle of whether there are unrecognized poly-
ploidy events deep in the evolutionary history of the fungi,
more data are clearly needed. Encouragingly, the evidence
required to address the extent of ancient polyploidy in fungi
is increasingly becoming available, aided by the relatively
small genome sizes of fungi. Two complementary types of
data will help investigate the role of polyploidy in fungal evo-
lution: (1) additional chromosome count data and (2) ge-
nomic sequence data.
Given the difficulties of observing condensed fungal chro-

mosomes (Kohn1992), thebest sourceof chromosomecounts
for fungi still remains pulsed field gel electrophoresis. While
obtaining precise chromosome counts from these gels is
challenging, estimates remain valuable for detecting large
shifts in chromosome number resulting from polyploidy
events. Other techniques—such as hybridization-based de-
tection of telomeres (Ijdo et al. 1991; Garrido et al. 2012),
fluorescent detection of the centromere-specific histone var-
iant (Henikoff et al. 2001; Cleveland et al. 2003; Jin et al.
2008; Shibata et al. 2013; Tek et al. 2014), and optical map-
ping (Schwartz et al. 1993)—could also be employed. How-
ever, as DNA sequencing technologies and genome assem-
bly algorithms improve, chromosome-level assemblies are
soon likely to provide the most accessible means of obtain-
ing chromosome counts (Marie-Nelly et al. 2014; Faino et al.
2015). Broader coverage of chromosome counts across the
fungal phylogenywill then allow chromosomemodelingmeth-
ods, such as the one we employed above, to generate more
robust predictions of polyploidy.
The most powerful way to detect polyploidy and, in par-

ticular, ancient polyploidy is through genome sequence
analysis. A number of sophisticated analyses are now avail-
able for inferring polyploidy events from genomic data. These
include synteny-based methods that have revealed ancient
polyploidization events in Saccharomyces yeasts and Rhizo-
pus (Kellis et al. 2004; Ma et al. 2009). Synteny comparisons
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identify homologous regions within and between genomes,
with patterns of conserved gene order for suites of gene
duplicates across a genome providing evidence for genome
duplication through polyploidy. Such approaches have been
widely used in eukaryotes, particularly in plants, but rapid
genome rearrangements (Fischer et al. 2006; Ma et al. 2010;
Stukenbrock 2013) reduce the power of these approaches
for fungi, making the identification of paleopolyploids more
challenging than for plants or animals at comparable time-
scales.

Another widely used method employs synonymous sub-
stitutions, which are unaffected by the strong pressures on
nonsynonymous substitutions. Polyploidization results in the
creation of multitudinous paralogous gene pairs, and for each
pair of paralogs, a per-site synonymous divergence can be cal-
culated (Ks). The mass origin of paralogs at the same time
resulting from polyploidization will create a peak in the dis-
tribution of Ks values, and the value of Ks on which a peak
is centered serves as a proxy for time (Lynch and Conery
2000, 2003). However, the ability of a Ks-based approach to
detect paleopolyploidy decreases in power as the age of the
polyploidy event increases and is subject to effects of satura-
tion and stochasticity, leading to decreased signal and arti-
ficial indications of paleopolyploidy (Cui et al. 2006; Van-
neste et al. 2013).

Phylogenomic approaches encompass amore recently de-
veloped suite of methods that also use protein-coding genes
to provide evidence for ancient polyploidy. The rationale is
that duplications observed in a gene tree are bounded by the
lineages that diverged before and after them. Using gene tree/
species tree comparisons, these duplications can be dated
(Huerta-Cepas et al. 2007; Huerta-Cepas and Gabaldón
2011). A peak in the number of observed gene duplications
on a given branch of the species tree provides strong sup-
port for a whole-genome duplication event at that point.
A particular strength of phylogenomic approaches is that
the origin (auto- or allopolyploidy) can increasingly be de-
tected. For instance, a recent phylogenomic analysis of the
ancient polyploidization event in the Saccharomyces lineage
provided evidence that this ancestral event likely resulted
from an ancient allo- (rather than auto-) polyploidization
event (Marcet-Houben and Gabaldón 2015). Specifically,
support for this scenario came from the surprising finding
that paralogs (ohnologs) derived from the whole-genome
duplication event had already diverged before the chromo-
some doubling event occurred, indicating that they were
present as two distinct lineages at the time of the polyploi-
dization. As the number and taxonomic diversity of fully se-
quenced genomes increases, so too does the power of phy-
logenomic approaches to detect and date gene duplicates.
Therefore, this approachwill increasingly be useful for iden-
tifying ancestral polyploidization events and disentangling
their origins.
Finally, another potential avenue for identifying fungal
paleopolyploidy may be modeled after vertebrate research.
The oldest vertebrate genome duplications were supported
by patterns of paralogy in HOX gene clusters (Ohno 1999;
Popovici et al. 2001; Blomme et al. 2006), which are associ-
ated with the evolution of body plans and occur as a single
cluster in invertebrates but as four clusters on different chro-
mosomes in humans (Garcia-Fernandez 2005; Nakatani et al.
2007). If analogous conserved gene clusters are found in fungi,
they may help to identify paleopolyploidy events 1100 mil-
lion years ago.
Regardless of which methods are used, a broader and

deeper sampling of fungal genome diversity will be required
to determine whether polyploidy events deep in the evolu-
tionary history of fungi really are more widespread than is
currently observed. The generation and analysis of fungal
chromosome count data will aid in this by providing initial
predictions of ancient fungal polyploidy events to target
subsequent effort using genomic approaches that are not
trivial to perform.
Conclusions

The role that ancient polyploidy has played in the evolu-
tionary history of the fungi remains unclear. Polytomies
in the fungal tree of life (figs. 1, 2) that are difficult to resolve
(Lang et al. 2002; Ebersberger et al. 2011) and the large
number of species-rich lineages (Deacon 2006; Stajich et al.
2009) are both suggestive of rapid historical radiations. If
polyploidy is a critical contributing factor for evolutionary
radiations, we would expect to find evidence for polyploidy
at the base of these lineages. Conversely, a lack of polyploidy
events underpinning significant fungal radiation episodes
would suggest that eukaryotic evolutionary diversification
is not necessarily linked to polyploidy. Thus, determining
the extent of ancient fungal polyploidy and its role in fungal
evolutionary history is an important component of the de-
bate as to whether polyploidy really is a major driver of spe-
cies diversifications across the eukaryotes as a whole, as well
as to obtain a better understanding of the evolutionary his-
tory of this important group of organisms.
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