Dothistromin genes at multiple separate loci are regulated by AflR

Pranav Chettria, Kenneth C. Ehrlichb, Jeffrey W. Caryb, Jérôme Collemarec, Murray P. Coxa,
Scott A. Griffithsc, Malin A. Olsons, Pierre J.G.M. de Wits, Rosie E. Bradshawa,n

aBio-Protection Research Centre, Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand
bSouthern Regional Research Center, Agricultural Research Service, USDA, New Orleans, LA 70124, USA
claboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands

A R T I C L E I N F O

Article history:
Received 2 October 2012
Accepted 12 November 2012
Available online 1 December 2012

Keywords:
Gene regulation
Dothistroma septosporum
Secondary metabolism
Aflatoxin
Gene cluster
Cladosporium fulvum

A B S T R A C T

In fungi, genes involved in the production of secondary metabolites are generally clustered at one location. There are some exceptions, such as genes required for synthesis of dothistromin, a toxin that is a chemical analog of the aflatoxin precursor versicolorin A and made by the pine needle pathogen Dothistroma septosporum. The availability of the D. septosporum genome sequence enabled identification of putative dothistromin genes, including an ortholog of the aflatoxin regulatory gene AflR, and revealed that most of the genes are spread over six separate regions (loci) on chromosome 12 (1.3 Mb). Here we show that levels of expression of the widely dispersed genes in D. septosporum are not correlated with gene location with respect to their distance from a telomere, but that AflR regulates them. The production of dothistromin by D. septosporum in which the AflR gene was knocked out (ΔDsAflR) was drastically reduced, but still detectable. This is in contrast to orthologous AAflR mutants in Aspergillus species that lack any aflatoxin production. Expression patterns in ΔDsAflR mutants helped to predict the complete set of genes involved in dothistromin production. This included a short-chain aryl alcohol dehydrogenase (NorB), which is located on chromosome 11 rather than chromosome 12, but was 24-fold down regulated in ΔDsAflR. An orthologous set of dothistromin genes, organized in a similar fragmented cluster arrangement to that seen in D. septosporum, was found in the closely related tomato pathogen Cladosporium fulvum even though this species does not produce dothistromin. In C. fulvum, pseudogenization of key biosynthetic genes explains the lack of dothistromin production. The fragmented arrangement of dothistromin genes provides an example of coordinated control of a dispersed set of secondary metabolite genes; it also provides an example where loss of dothistromin production might have allowed adaptation to a new pathogenic lifestyle.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Dothistroma septosporum is a globally important forest pathogen that causes red band needle blight disease of pine trees (Bradshaw, 2004). The disease symptoms are characterized by red bands in infected needles that contain dothistromin, a polyketide-derived toxin produced by the pathogen (Bassett et al., 1970). Dothistromin (DOTH) is produced in culture as well as in needle lesions, has a difuroanthraquinone structure and is structurally related to aflatoxin (AF), sterigmatocystin (ST) and versicolorin (VER) metabolites produced by some Aspergillus species (Gallagher and Hodges, 1972; Shaw et al., 1978).

Dothistromin is a broad-spectrum toxin that generates oxygen radicals by reductive oxygen activation (Youngman and Elstner, 1984) but its exact role in needle blight disease is unknown. It is not essential for pathogenicity as D. septosporum mutants lacking the ability to make DOTH are still able to infect pine (Pinus radiata) (Schwelm et al., 2009). Its toxicity to other fungi that inhabit pine needles led to the suggestion that it confers a competitive advantage for D. septosporum (Schwelm et al., 2009). However, in recent studies an effect on disease lesion formation and sporulation in planta has been shown, suggesting a role in virulence (Kabir and Bradshaw, unpublished results).

In fungi genes required for synthesis of secondary metabolites are generally clustered and co-regulated (Keller and Hohn, 1997; Martin and Liras, 1989). Precursors in DOTH biosynthesis are shared with those involved in aflatoxin biosynthesis but unlike the single cluster of genes involved in AF biosynthesis, in D. septosporum most DOTH genes are arranged at separate loci on a 1.3-Mb chromosome (Schwelm and Bradshaw, 2010; Zhang et al., 2007). Although 10 DOTH biosynthesis genes were found prior to the availability of the D. septosporum genome sequence (Bradshaw et al., 2002, 2006; Zhang et al., 2007) the remaining DOTH genes
were difficult to locate since they are not contiguous. The *D. septosporum* genome sequence was assembled to chromosome level allowing identification of more biosynthesis genes at additional loci (de Wit et al., 2012). A similar fragmented arrangement of DOTH genes was also found in the genome of the closely related biotrophic tomato pathogen, *Cladosporium fulvum*, a species not known to produce DOTH (de Wit et al., 2012).

Clustering of secondary metabolite (SM) genes is thought to be important for co-regulation and for rapid production of SMs under specific environmental conditions when their presence is required (Chiou et al., 2002; Palmer and Keller, 2010). Studies of global regulation suggest that gene location is critical for regulation (Bok et al., 2009; Palmer and Keller, 2010; Perrin et al., 2007), leading us to question how the physically separated set of DOTH genes is (co-)regulated in *D. septosporum*. Studies with the first 10 DOTH genes to be identified showed that they are indeed co-regulated (Chiou et al., 2002; Palmer and Keller, 2010). Studies of global regulatory features with clustered genes in other fungal species (Chettri et al., 2012) demonstrated that *DsAflR* is not known.

In *Aspergillus* spp., regulation of clustered AF and ST genes involves a pathway specific transcription factor *AflR* that belongs to the zinc binuclear domain (Zn2Cys6) class (Chang et al., 1995a; Payne et al., 1993). In *A. parasiticus* deletion of *aflR* (*DsAflR*) abolished the expression of most AF pathway genes (Cary et al., 2000) and prevented production of AF. Overexpression of *aflR* in both *A. parasiticus* and *A. flavus* caused up regulation of AF gene transcription and AF accumulation (Chang et al., 1995b; Flaherty and Payne, 1997). Detailed analysis of gene expression using microarrays identified 23 genes in *A. parasiticus* more highly expressed in the wild type than in the Δ*aflR* mutant. Eighteen of the genes differentially expressed on the microarray were AF biosynthetic genes with a putative conserved AflR binding site

\[5'-TCG(N5)CGR-3' \]

in their promoters (Price et al., 2006) but more recent studies report that the promoters of almost all AF cluster genes contain AflR binding sites (Ehrlich, 2009; Ehrlich et al., 2008).

We recently demonstrated an important role for the global SM regulator, VeA, in DOTH biosynthesis, suggesting common regulatory features with clustered genes in other fungal species (Chettri et al., 2012). Here we report characterisation of the complete set of DOTH genes in *D. septosporum*, demonstrate that *DsAflR* is involved in regulating their expression and predict which gene products are required for the last steps of DOTH biosynthesis. We also show that in the closely related species *C. fulvum*, although *CfAflR* retains partial functionality, lack of DOTH production can be accounted for by pseudogenization of essential genes including *CfHexA* and *CfNor1* in this fungus.

2. Materials and methods

2.1. Strains and culture conditions

D. septosporum NZE10 (CBS128990) is a New Zealand wild-type forest isolate and the strain whose genome was sequenced by the Joint Genome Institute (JGI). Cultures were grown on Dothistroma Medium (DM), Dothistroma sporulation medium (DSM) (Bradshaw et al., 2000) or a minimal salts medium prepared with water in which pine needles had been soaked overnight (PMMG) as previously described (McDougal et al., 2011). Liquid cultures were grown for 7 days with agitation at 280 rpm, and then mycelia collected by filtration through Mira cloth.

The genome sequence of *C. fulvum* (race 0WU; CBS131901; isolated from a tomato in the Netherlands) was generated at Wageningen University (de Wit et al., 2012) and made publically available at the JGI portal.

2.2. Gene identification and sequence comparisons

The *DsAflR* gene was identified by blastp analysis of *D. septosporum* genome models available at the JGI genome site (http://genome.jgi-psf.org/Dotse1/Dotse1.home.html) using *A. parasiticus* (AAS66018) and *A. nidulans* (AAC49195) AflR as query sequences. The *DsAflR* protein identification number (PID) is 75566. Alignments were performed using ClustaW (Larkin et al., 2007) and conserved regions (as summarized by Bhatnagar et al., 2003) were identified. Putative AflR transcription factor binding sites with the consensus sequence (TGC(N7)CGR) (Ehrlich et al., 1999) that occurred within 1 kb of predicted translation start sites were identified, as well as variant sequences TGC(N11)CGR (Fernandes et al., 1998) and TGC(N11)CGR (Zhang et al., 2007), using Clone Manager Professional suite version 8 (Scientific & Educational Software, http://www.scied.com).

2.3. Gene knockout and complementation

Genomic DNA was extracted from freeze-dried mycelia of *D. septosporum* using the CTAB method described earlier (Moller et al., 1992). For the construction of a *D. septosporum* *DsAflR* knockout vector 1433 bp of coding region was replaced by an *A. niger* *glaA* promoter-hygromycin resistance gene cassette. The *DsAflR* replacement vector pR310 was constructed using a Multisite Gateway system (Invitrogen, Carlsbad, CA) as described previously for the VeA gene knockout (Chettri et al., 2012). Three entry clones were created by PCR amplification of a 5’ region of *DsAflR*, including nucleotides 692748–693934 of scaffold 12 (JGI genome coordinates), a selectable marker that confers hygromycin resistance (*hph*) and a 3’ region of *DsAflR*, including nucleotides 690012–691253. Primer sequences are shown in Supplementary Table S1. *D. septosporum* NZE10 was transformed with the three-fragment plasmid pR310 using methods described previously (Bradshaw et al., 2006) and transformants were single-sporre purified.

Complementation of *D. septosporum* *AflR* replacement strain KO1 with *DsAflR* was achieved by co-transformation with a 1:1 ratio of *DsAflR* coding sequence flanked by 1 kb upstream and downstream sequence (i.e. nucleotides 690431 to 695967 of *D. septosporum* scaffold 12), and the vector pBCphleo (pR224) that confers phleomycin resistance. Transformants were selected on 10 μg/ml phleomycin and were single-sporre purified. Confirmation of *DsAflR* gene replacement and complementation was determined by PCR and Southern hybridisation of *BgII*-digested DNA with a digoxigenin (DIG)-labeled probe encompassing *DsAflR* 3’ flank and *hph* gene regions, following the protocol earlier described (Bradshaw et al., 2006) and as shown in Supplementary Fig. S1.

To determine if *CfAflR* is functionally orthologous to *DsAflR*, the *D. septosporum* *DsAflR* mutant was transformed with a 2.9 kb genomic DNA fragment containing the *CfAflR* gene (nucleotides 85195–88132 of *C. fulvum* scaffold 130965), using methods outlined above. PCR primers used for amplification and for verification of constructs and transformants are shown in Supplementary Table S1.

2.4. Expression analysis and dothistromin assays

D. septosporum mutants and wild-type controls were grown in liquid DM or PMMG medium for 7 days at 22 °C with shaking (100–160 rpm). SMs were extracted from the media and the secreted DOTH assessed by TLC and quantified by HPLC using methods described previously for *D. septosporum* velvet gene mutants (Chettri et al., 2012). RNA was extracted from mycelia grown in...
the same flanks and gene expression assessed by quantitative real-time (qRT)-PCR using methods published earlier (Chettri et al., 2012). Sequences of primers used for qRT-PCR are shown in Supplementary Table S1.

Data significance in comparisons, where required, was determined using a two-tailed T-test based on the null hypothesis of no significant difference. For qRT-PCR comparisons, REST 2009 (Relative Expression Software Tool) was used (Pfaffl et al., 2002). Pearson's correlation coefficients were calculated using http://www.statoolstools.net/.

3. Results and discussion

3.1. Organization and re-naming of the predicted set of D. septosporum dothistromin genes

The availability of the D. septosporum genome enabled rapid identification of a complete set of candidate DOTH biosynthetic and regulatory genes. Where justified, DOTH genes have been named according to their Aspergillus parasiticus/A. flavus orthologs in the AF biosynthetic pathway. After consultation with the AF research community it was decided to use the old-style descriptive gene names (e.g. vbsA, verB) instead of the new afl letter codes (e.g. aflK, aflJ) (Yu et al., 2004), and to keep original names for the regulatory genes aflR and aflJ. However, the Dothideomycete gene-naming convention of capitalization of the first letter of the gene name has been adopted for D. septosporum genes. Cross-references to afl (AF) and stc (ST) gene names are given in Table 1 and Fig. 1. In some cases this means a change of name for DOTH genes, such that dotA (Bradshaw et al., 2002) becomes Ver1, and genes previously called moxA and cypA (Bradshaw et al., 2006) become MoxV and CypX to highlight orthology with AF genes. When required to distinguish between orthologs from different species, the genes will be referred to with a prefix such as DsAfIR for D. septosporum AfIR and CjAfIR for C. fulvum AfIR.

Dothistromin genes are dispersed across chromosome 12 at six loci (de Wit et al., 2012) as shown in Fig. 1A. Thirteen of the enzyme-encoding genes are predicted to be required for biosynthetic steps up to versicolorin A (VA). The gene products and the chemistry involved in these steps have been well characterized (Ehrlich, 2009; Ehrlich et al., 2010; Wen et al., 2005; Yabe and Nakajima, 2004; Yu et al., 2004). For the remainder of this manuscript they will be referred to as ‘core’ genes. The proposed functions of these core genes and their roles in VA biosynthesis are shown in Fig. 1B and Table 1. Of these, gene replacement has confirmed the function of four including PksA (Bradshaw et al., 2006), VbsA (Zhang et al., 2007), HexA and AdhA (Supplementary Table S2). An additional gene, VerI (originally called dotA) has also been functionally characterized and is thought to be required for a subsequent pathway step between VA and DOTH (Bradshaw et al., 2002). Putative orthologs of late pathway AF/ST genes occur at locus 5 (OrdB) and on chromosome 11 (NorB). No orthologs of the late pathway genes found in the A. parasiticus and A. nidulans AF and ST gene clusters that are required for conversion of VA to ST [omtB (aflO); verA (aflN)] or of ST to AF [orda (aflQ); omtA (aflP)] were found in the D. septosporum genome by reciprocal BLAST analysis (Ohm et al., 2012).

Other genes that are not orthologous to AF/ST genes but for which a role in DOTH biosynthesis could be envisaged include DotB, a peroxidase-encoding gene adjacent to Ver1 in locus 1.

Table 1

<table>
<thead>
<tr>
<th>New gene name</th>
<th>Dotse1 protein ID</th>
<th>Amino acids</th>
<th>Introns</th>
<th>Gene copy number</th>
<th>Wild-type expression in PMMG</th>
<th>AF ortholog Ap</th>
<th>ST ortholog An</th>
<th>% ID Ap</th>
<th>% ID An</th>
<th>Predicted function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ver1<sup>AD</sup></td>
<td>192193</td>
<td>264 2 7</td>
<td>0.03</td>
<td>aflM</td>
<td>stcL</td>
<td>79.2</td>
<td>24.0</td>
<td>PAdP reductase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DotB</td>
<td>75412</td>
<td>415 0 11</td>
<td>0.09</td>
<td>-</td>
<td>(stcC)</td>
<td>-</td>
<td>-</td>
<td>Peroxidase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DotC</td>
<td>75413</td>
<td>581 15</td>
<td>0.22</td>
<td>(aflT<sup>A</sup>)</td>
<td>-</td>
<td>31.2</td>
<td>-</td>
<td>MFS transporter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PksA<sup>E</sup></td>
<td>192192</td>
<td>2400 2 2</td>
<td>0.13</td>
<td>aflC</td>
<td>stcA</td>
<td>55.1</td>
<td>58.2</td>
<td>Polyketide synthase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CypA<sup>C</sup></td>
<td>139960</td>
<td>512 2 4</td>
<td>0.50</td>
<td>aflV</td>
<td>stcB</td>
<td>58.9</td>
<td>61.6</td>
<td>P450 monoxygenase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AvfA</td>
<td>75546</td>
<td>285 4 0</td>
<td>0.14</td>
<td>aflE</td>
<td>stcD</td>
<td>49.3</td>
<td>44.9</td>
<td>NAD(PH) reductase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EpoA</td>
<td>57187</td>
<td>421 1 6</td>
<td>0.01</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Epoxide hydrolase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MoxY<sup>E</sup></td>
<td>75547</td>
<td>627 5 11</td>
<td>0.21</td>
<td>aflW</td>
<td>stcV</td>
<td>55.4</td>
<td>50.6</td>
<td>Flavin-binding monoxygenase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AflR<sup>N</sup></td>
<td>75566</td>
<td>480 2 1</td>
<td>0.40</td>
<td>aflR</td>
<td>aflR</td>
<td>27.5</td>
<td>30.4</td>
<td>Regulatory protein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adh<sup>1</sup></td>
<td>57214</td>
<td>457 2 1</td>
<td>0.08</td>
<td>afls</td>
<td>aflf</td>
<td>37.1</td>
<td>40.8</td>
<td>Methyltransferase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Est1</td>
<td>75609</td>
<td>329 3 1</td>
<td>0.22</td>
<td>(aflJ)</td>
<td>(stcD)</td>
<td>29.6</td>
<td>27.8</td>
<td>Esterase (alpha/beta hydrolase)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OrdB</td>
<td>75648</td>
<td>268 0 1</td>
<td>0.11</td>
<td>aflX</td>
<td>stcQ</td>
<td>54.1</td>
<td>45.3</td>
<td>NAD(P) reductase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AvnA</td>
<td>57312</td>
<td>526 3 9</td>
<td>0.08</td>
<td>aflG</td>
<td>stcF</td>
<td>57.5</td>
<td>58.3</td>
<td>P450 monoxygenase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HexA<sup>A</sup></td>
<td>181128</td>
<td>1905 4 2</td>
<td>0.11</td>
<td>aflB</td>
<td>stcX</td>
<td>52.2</td>
<td>46.0</td>
<td>Fatty acid synthase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HypC<sup>2</sup></td>
<td>66976</td>
<td>1693 2 2</td>
<td>0.28</td>
<td>aflA</td>
<td>stcJ</td>
<td>55.4</td>
<td>45.5</td>
<td>Fatty acid synthase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vbs<sup>A</sup></td>
<td>75655</td>
<td>186 1 1</td>
<td>0.37</td>
<td>aflZ</td>
<td>stcM</td>
<td>35.2</td>
<td>47.9</td>
<td>Anthrone oxidase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nor1</td>
<td>75691</td>
<td>269 3 2</td>
<td>0.32</td>
<td>aflD</td>
<td>stcE</td>
<td>59.7</td>
<td>58.5</td>
<td>NAD(PH) reductase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adh<sup>A</sup></td>
<td>48495</td>
<td>307 2 2</td>
<td>0.06</td>
<td>aflH</td>
<td>stcG</td>
<td>58.1</td>
<td>60.6</td>
<td>Alcohol dehydrogenase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VerB</td>
<td>75692</td>
<td>521 2 7</td>
<td>0.42</td>
<td>aflL</td>
<td>stcL</td>
<td>67.1</td>
<td>67.6</td>
<td>Desaturase (P450 monoxygenase)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NorB</td>
<td>75044</td>
<td>392 0 4</td>
<td>0.18</td>
<td>aflF</td>
<td>stcV</td>
<td>60.7</td>
<td>43.6</td>
<td>Aryl alcohol dehydrogenase</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Genes are listed by position (top to bottom) in loci 1–6 or on chromosome 11 (NorB). Details of additional and flanking genes are shown in Table S3.

^a Old names are dotA (Ver1), cypA (CypX), moxA (MoxY).

^b Protein identification (accession; PIDs) numbers refer to those at (http://genome.jgi.doe.gov/Dotse1/Dotse1.home.html). The PID numbers shown are the best gene models; old Dotse1 PID numbers in the gene catalog are HexA 75653, PksA 48345, Ver1 75411, HypC 66978.

^c Copy numbers with e-value <1e-20 and >40% similarity.

^d Mean expression determined by qRT-PCR and expressed relative to beta-tubulin gene expression (full data in Table S4).

^e Brackets indicate orthology to D. septosporum gene is not supported by phylogenetic studies (Bradshaw et al., unpublished results).

^f Percentage amino acid identities (% ID) to A. parasiticus (Ap) and A. nidulans (An) AF/ST genes determined by CLUSTALW whole sequence alignment.

^g Function confirmed by gene knockout.
Fig. 1. The fragmented arrangement of dothistromin genes and proposed scheme for dothistromin biosynthesis. (A) The six loci (labeled 1–6) are shown along chromosome 12, with corresponding predicted dothistromin (DOTH) genes shown alongside as shaded arrows indicating the direction of transcription. Unshaded arrows represent genes not thought to have a role in DOTH biosynthesis but those discussed in the text are named. Sizes of intergenic regions (bp) are shown on the left. Numbers of putative AflR binding sites are shown on the right (see Table S6 for details). The NorB gene, shown at the bottom, is on chromosome 11 (152 kb from the telomere and 1621 bp from the nearest upstream gene). (B) The biosynthetic pathways of DOTH and aflatoxin have common steps as far as versicolorin A. D. septosporum DOTH genes are placed on the pathway based on orthology (or similarity in the case of Est1) to aflatoxin genes of known function. (C) A possible biosynthetic pathway from versicolorin A to DOTH is shown, based on that described by Henry and Townsend (2005), with predicted gene designations as discussed in the text.
showed that, whilst complement strain CO1 had one copy of DsAflR (Fig. 2). To test the hypothesis that DsAflR regulates the expression of DOTH biosynthetic genes, three independent knockout mutants were made in D. septosporum and one of them (KO1) was complemented with DsAflR by co-transformation. Southern hybridization of the 13 core genes were all disrupted in DsAflR mutants compared to the wild type (Fig. S1). The ability of DsAflR knockout mutants to produce DOTH was tested in two different culture media: a rich complex medium (DM) and a minimal salts medium containing pine needle extract (PMMG). At least a 10²-fold and a 10³-fold reduction in DOTH levels was shown in DsAflR mutants compared to the wild type in these respective media (Table 2), but low levels of DOTH production (above background levels) remained (see also Supplementary Fig. S2). The complemented mutant with additional copies of DsAflR produced higher levels of DOTH than the wild type (Table 2), as would be expected for an AflR overexpression mutant (Flaherty and Payne, 1997).

In A. flavus, A. parasiticus and A. nidulans, disruption of AflR led to mutants completely lacking the ability to produce either AF or ST (Fernandes et al., 1998; Payne et al., 1993; Price et al., 2006). This suggests that, although DsAflR is needed for high levels of expression, other regulatory proteins may be able to provide low-level activation of DOTH genes. The putative transcription factor (PID 29121) that is encoded at locus 5 is only 22–23% identical with the AflR proteins. It is therefore plausible that conservation of similar levels of genetic control as the tightly clustered AF genes, thereby enabling their activation by basal transcription factors.

To test the prediction that DOTH genes would be down regulated in DsAflR mutants, qRT-PCR assays were carried out to compare gene expression with that in wild-type and DsAflR-complemented D. septosporum strains. The 13 core genes were all significantly down regulated in a DsAflR mutant in PMMG medium, showing from 1.6-fold (PksA) to 90.9-fold (AvnA) down-regulation compared to the wild type (Fig. 3). Down-regulation was also shown for the functionally confirmed DOTH Ver1 gene (11.9-fold) as well as for other AF/ST orthologs with unassigned roles.

Fig. 2. Multiple alignment of predicted AflR protein sequences. AflR sequences are from Dothistroma septosporum (Ds), Cladosporium fulvum (Cf), Aspergillus parasiticus (Ap) and Aspergillus nidulans (An). A conserved zinc binuclear domain (Zn2Cys6) is highlighted in black. Amino acids highlighted with gray are thought to determine DNA-binding specificity in Aspergillus spp. and are similar in all four fungi. C-terminal arginine residues (bold) implicated in AflJ binding in A. parasiticus (Chang, 2003) are also conserved.
in DOTH biosynthesis (OrdB, 8.1-fold; NorB, 23.8-fold). In addition, genes predicted to encode a peroxidase (DotB) and NADP reductase (160897) showed 4.4-fold and 2.7-fold down regulation in the ΔDsAflR mutant, respectively. Genes encoding the transcription factor PID 29211 (locus 5) and an epoxide hydrolase (EpoA, locus 2) did not show significant down-regulation.

In A. parasiticus all AF orthologs of DOTH genes, except aflI (avfA) and aflJ (norB), were down regulated in a ΔDsAflR knockout strain compared to the wild type (Georgianna and Payne, 2009; Payne et al., 1993; Price et al., 2006). It is notable that in D. septosporum DsNorB showed strong down-regulation despite being located on a separate chromosome to the majority of DOTH genes. Also of interest is that in D. septosporum DsAflJ is 8-fold up regulated in the ΔDsAflR mutant. To determine whether this was due to a mutation in the DsAflJ regulatory region introduced by the ΔDsAflR knockout procedure, the shared DsAflR-AflJ intergenic region was sequenced, but no mutations were found. Whether or not DsAflJ acts as a repressor of DOTH biosynthesis requires further investigation. In A. parasiticus, ApAflJ is thought to be a co-regulator of aflatoxin biosynthesis and binds to ApAflR. Three C-terminal arginine residues of ApAflR are implicated in this binding (Chang, 2003); these amino acids are conserved in DsAflR. However, DsAflJ did not complement an A. parasiticus mutant lacking aflJ (Ehrlich, unpublished results), suggesting AflJ may not be functionally conserved between these species.

In D. septosporum, the multi-copy complemented strain CO2 displayed 2-fold overexpression of DsAflR and correspondingly higher levels of expression for 9 out of the 13 ‘core’ pathway genes, but 2.4-fold down-regulation of DsAflJ (Supplementary Table S4). Expression of DOTH genes by cultures grown in rich DM medium showed a less consistent trend compared to those in PMMG pine extract medium but most DOTH genes were down-regulated in a ΔDsAflR mutant (Supplementary Table S4). Overall the patterns of DOTH gene expression in the ΔDsAflR mutant are consistent with DsAflR being the pathway-specific Zn2Cys6 transcriptional regulator of DOTH biosynthesis and with DsAflJ having some, possibly repressive, role in DOTH biosynthesis.

SM gene clusters are usually located within the sub-telomeric region of chromosomes. It has been suggested that such location may affect epigenetic control of transcription of these clustered genes (Palmer and Keller, 2010). Dothistromin genes are unique in being co-regulated even though the genes are separated into six loci that are dispersed over one chromosome (Fig. 1). Analysis of gene expression levels in wild-type D. septosporum showed no correlation with the chromosomal positions of genes (in terms of distance from a telomere) in either pine extract (PMMG) or rich (DM) media (Supplementary Table S5). With regard to the effect of DsAflR on gene expression, genes showing the strongest down-regulation in the ΔDsAflR mutant compared to the wild type (>30-fold) are located within 140 kb of a telomere (Dotc, AvnA and AdhA/VerB at loci 1, 5 and 6, respectively), whilst genes located in the more central loci 2, 3 and 4 showed a maximum of 11-fold down-regulation. However, overall there was not a significant correlation between chromosomal position of genes and the effect of deleting DsAflR on expression of those genes (r = 0.24, P = 0.34) (Supplementary Table S5). Overall these results suggest that the position of a DOTH gene in the chromosome, with respect to distance from the telomeres, is not a strong determinant of expression level.

Consistent with a role for DsAflR in regulation of DOTH biosynthesis, most core DOTH genes in D. septosporum contain between one and five putative upstream AflR binding sites (TCC(N5)GCR) (Fig. 1A; Supplementary Table S6). The number of predicted AflR sites does not appear to be important; Ver1 has only one such site but was 83-fold down-regulated in the ΔDsAflR mutant, whilst Ver1 has five AflR binding sites but was only 12-fold down-regulated. In studies with Aspergillus spp. it was shown that although some AF/ST genes possess more than one AflR binding site, in many cases the one closest to the translation start site is sufficient for gene activation (reviewed in Bhatnagar et al., 2003).

The only core DOTH gene without a putative AflR-binding sequence TCC(N5)GCR is DsEst1. This gene is predicted to fulfill the role of estA in AF/ST biosynthesis, although it is not considered an ortholog based on its low (<30% aa) identity to A. parasiticus and A. nidulans estA (Table 1) and its placement in a separate clade.

Fig. 3. Expression of dothistromin genes in D. septosporum AflR mutants. Gene expression was evaluated by quantitative real-time PCR and is shown as log10 x-fold differences in expression (mean ± SEM) in ΔDsAflR mutant KO1 (black bars) and the DsAflR complementation mutant CO1 (gray bars) relative to expression in the wild type. The genes are grouped according to locus (1–6) on chromosome 12, or on chromosome 11 for NorB.

Table 2

<table>
<thead>
<tr>
<th>Strain</th>
<th>Dothistromin production (pg/mg DW)</th>
<th>DM medium</th>
<th>PMMG medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>45,091 ± 10,807</td>
<td>8192 ± 1437</td>
<td></td>
</tr>
<tr>
<td>KO1</td>
<td>0.15 ± 0.030*</td>
<td>0.16 ± 0.100*</td>
<td></td>
</tr>
<tr>
<td>KO2</td>
<td>0.12 ± 0.012*</td>
<td>0.36 ± 0.156*</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>55,947 ± 7676</td>
<td>6136 ± 517</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>150,205 ± 12,404</td>
<td>16,217 ± 1737</td>
<td></td>
</tr>
</tbody>
</table>

Dothistromin secreted into growth media by wild type (WT), ΔDsAflR knockout mutants (KO1, KO2) or mutant KO1 complemented with DsAflR (CO1, CO2). Values are means ± SD (n = 3).

* Significantly different from wild type (P < 0.05). Assay resolution limit is <0.1 pg/ mg.
by phylogenetic analysis (Bradshaw et al., unpublished results). Despite 11-fold down-regulation in the ΔDsAflR mutant, ΔEst1 has neither the canonical AflR-binding site nor the variant TCG(N10)TCG site that was speculated to be a target for AflR in A. nidulans (Fernandes et al., 1998). However, it does contain another variant (TCG(N11)GCR) that was previously noted upstream of many DOTH genes in D. septosporum (Bradshaw et al., 2002; Zhang et al., 2007); whether this site is functional is not known. Intriguingly, in A. parasiticus, the activity of the estA-encoded esterase was shown to be complemented by another unknown cytosolic esterase enzyme which is not encoded in the AF cluster (Chang et al., 2004; Yabe and Nakajima, 2004); it would be interesting to determine whether the unknown esterase is orthologous to ΔEst1.

3.4. A proposed biosynthetic pathway for dothistromin

Based on the production of 5,8-dihydroxyanthraquinone intermediates by DOTH-producing fungi (Danks and Hodges, 1974), a biosynthetic scheme was proposed for synthesis of DOTH (Henry and Townsend, 2005) that involves epoxidation of VA. Using this scheme, we suggest roles for DsAflR-regulated genes in the final steps of DOTH biosynthesis in D. septosporum (Fig. 1C). In step I, it is possible that DotB, a predicted chloroperoxidase with weak (24%) amino acid identity to Stcc (McDonald et al., 2005) performs epoxidation of the A-ring of VA. Alternatively, a cytochrome P450 (CytP450), such as CypX or AvnA (CytP450 enzymes encoded by the DOTH cluster and thought to function in the earlier part of the pathway) could catalyze this step. There is a precedent for enzymes catalyzing more than one step in AF biosynthesis; this has been shown for the CytP450 OrdA, the esterase EstA and the cytochrome P450 enzyme encoded in the D. septosporum genome is responsible for this step.

Opening of the epoxide in Step II could potentially be achieved by the epoxide hydrolase EpoA, encoded by a gene divergently transcribed from MoxY. However, EpoA does not appear to be regulated by DsAflR. D. septosporum EpoA knockout mutants produced a compound indistinguishable from DOTH using an ELISA assay (Jin, 2005) and a syntenically positioned EpoA gene in the DOTH-producing fungus Passalora arachidicola is a pseudogene (Zhang et al., 2010). Together these results suggest EpoA is not required for DOTH biosynthesis, but other epoxide hydrolases may have the ability to complement this hydrolysis. Alternatively, opening of the epoxide ring could be achieved non-enzymatically as suggested for ST and related compounds (Henry and Townsend, 2005). Indeed hydroxylation of anthraquinones can be achieved directly by a single monoxygenase as shown for aurofusarin (Frandsen et al., 2006).

Step III involves deoxygenation of ring A to yield the 5,8-dihydroxyanthraquinone. This step is most likely catalyzed by the NADPH dehydrogenase encoded by Ver1 (dotA) as suggested previously (Henry and Townsend, 2005). This gene was functionally analyzed and shown to be required for DOTH biosynthesis, with gene knockout mutants accumulating a yellow pigment consistent with a stable VA-type intermediate (Bradshaw et al., 2002).

The last stages of DOTH biosynthesis (Step IV) are proposed to involve hydroxylation of the bisfuran. We suggest that enzymes encoded by OrdB and NorB, both regulated by DsAflR, might have oxidative roles here. In A. parasiticus, OrdB is an NAD(P)-dependent oxidoreductase that functions in conversion of VA to ST (Ehrlich and Yu, 2010) and in A. nidulans an orthologous gene is possibly required for biosynthesis of monocidenthyponem from emodin (Chiang et al., 2010). NorB encodes an aryl alcohol dehydrogenase that functions in late steps of AF biosynthesis and is postulated to function mainly in oxidation of alcohol groups (Ehrlich et al., 2008). Similar functions to these are predicted for OrdB and NorB in DOTH biosynthesis, although in D. septosporum NorB is located on a separate chromosome than all the other proposed DOTH genes. The D. septosporum genome does contain other genes similar to NorB (with >40% aa similarity and e-value <1e-20; Table 1), but those copies are located on chromosomes 1 and 2. An alternative possibility for Step IV is that CytP450 enzymes such as AvnA and CypX might perform these steps in addition to previously proposed steps.

Disruption of D. septosporum DotB, OrdB and NorB is in progress to test the hypotheses outlined above. Defining the last stages of the DOTH biosynthetic pathway is likely to be challenging due to multiple copies, and therefore possible functional redundancy, of the genes involved (Table 1). Accordingly, ordB and norB mutants of A. flavus have leaky phenotypes (Ehrlich, 2009). It is possible that other genes not mentioned here are involved in DOTH biosynthesis; discussion of some other cluster-associated genes and their possible roles is provided in Supplementary Text 1.

3.5. Cladosporium fulvum AflR partially complements DsAflR but some pathway genes are non-functional

C. fulvum contains a complete set of DOTH genes but does not produce DOTH (de Wit et al., 2012). Thus we investigated regulatory and structural genes in this species. The complete C. fulvum CJAIR gene was transformed into D. septosporum ΔDsAflR mutant KO1. In two independent transformants, CJAIR gene expression levels were comparable to those of DsAflR in wild-type D. septosporum (P = 0.29 and 0.14 for the respective transformants), suggesting that the CJAIR promoter is fully functional. Dothistromin was produced in these complemented transformants at levels ~100-fold higher than those in the ΔDsAflR mutant. However these DOTH levels were less than 0.1% of D. septosporum wild type levels (mean ± SD of 33.8 ± 1.8 and 25.2 ± 4.0 pg DOTH/mg DW for the two CJAIR complemented transformants respectively), suggesting a deficiency in CJAIR protein function. The predicted CJAIR protein contains the same conserved domains as DsAflR (Fig. 2) but whether other sequence differences between these two proteins affect CJAIR function is not yet known.

The suggested deficiency in CJAIR function lead us to question whether the DOTH biosynthetic genes are functional in C. fulvum. Manual annotation and, where necessary, cDNA sequencing, was carried out to ascertain structures of all the predicted DOTH genes of C. fulvum, and showed predicted amino acid identities ranging from 74% (AvfA) to 98% (Ver1) to DsAflR. Dothistromin was produced in these complemented transformants at levels ~30-fold higher than those in the ΔDsAflR mutant (mean ± SD of 18.6 ± 3.8). However, the CJAIR promoter is not conserved in C. fulvum; CJAIR is not expressed in C. fulvum (de Wit et al., 2012).

4. Conclusions

Dothistromin biosynthetic genes in D. septosporum are co-regulated by an AflR-like transcription factor even though they are arranged in multiple separated loci. This feature enabled prediction of genes involved in a proposed biosynthetic pathway for DOTH.
The fragmented arrangement contradicts the more usual finding that fungal SM genes are clustered at a single locus (Khaldi et al., 2010) and our results show that positioning of such clusters at subtelomeric regions of the chromosome does not necessarily affect co-regulation as had been previously suggested (Palmer and Keller, 2010; Yu and Keller, 2005). Preliminary phylogenetic analysis suggests that the ancestral gene cluster for dothistromin biosynthesis more closely resembled the unified clusters found for ST and AF biosynthesis, but while individual portions in the cluster became separated in the Dothideomycete lineage, they retained their ability to be co-regulated by a single transcription factor. Questions have arisen as to whether or not the original cluster was introduced by horizontal gene transfer (Slot and Rokas, 2010) and our results show that positioning of such clusters at a single locus (Khaldi et al., 2010). SMURF: genomic mapping of fungal secondary metabolite genes. Appl. Environ. Microbiol. 76, 3374–3377.

Acknowledgments

Financial support from Massey University, the New Zealand Bio-Protection Centre of Research Excellence, Royal Society of New Zealand, Graduate School of Experimental Plant Sciences (Netherlands) and Willie Commelin Scholten Foundation is acknowledged. Kimiko Yabe and Hiromitsu Nakajima (National Food Research Institute and Tottori University, Japan) are thanked for advice on the predicted dothistromin biosynthetic pathway.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.jgb.2012.11.006.

References

Frandsen, R.J.N. et al., 2006. The biosynthetic pathway for aurofusarin in Fusarium graminearum reveals a close link between the naphthoquinones and naphthopyrones. Mol. Microbiol. 61, 1069–1080.
Gallagher, R.T., Hodges, R., 1972. The chemistry of dothistromin, a forest pathogen, contains homologs of the aflatoxin pathway gene aflR that were introduced by horizontal gene transfer (Slot and Rokas, 2010). SMURF: genomic mapping of fungal secondary metabolism genes. Fungal Genet. Biol. 49, 141–151.

