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1 Details of SMC algorithm

This section describes an SMC ABC algorithm, essentially that of Toni and Stumpf

(2010), used in the main text. Following the algorithm is a description of the tuning

choices which were used.

Notation Models are denoted here by an indicator m ∈ {1, 2, . . . ,M}. The tth

weighted particle estimate is defined by model indicators m
(t)
i , parameters vectors θ

(t)
i

and weights w
(t)
i for 1 ≤ i ≤ N .

Input

Model prior pM(m).

Parameter priors π(θ|m) for each m ∈ {1, 2, . . . ,M}.

Algorithm to simulate from x|m, θ.

A summary statistics function S(·).

Observed summary statistics sobs.

Distance metric d(·, ·).

Swap probability α.

Number of particles N .

Rule to choose model update kernels K(t)(·|m).

Rule to choose parameter update kernels K(t)(·|θ,m).

Initial threshold h1.

Stopping condition (see step 4).

Rule to choose new thresholds (see step 5).

Algorithm

1 Initialise threshold counter t = 1.

2 Loop over i = 1, 2, . . . , N .

2.1 If t = 1:
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2.2 Sample m∗∗ from pM(m).

2.3 Sample θ∗∗ from π(θ|m = m∗∗).

2.4 Else:

2.5 Sample j from 1, 2, . . . , N with Pr(j) = w
(t−1)
j . Let m∗ = m

(t−1)
j .

2.6 With probability α sample m∗∗ from K(t)(m∗∗|m∗). Otherwise let
m∗∗ = m∗.

2.7 Sample j from 1, 2, . . . , N with Pr(j) ∝ w
(t−1)
j I(m

(t−1)
j = m∗∗). Let

θ∗ = θ
(t−1)
j .

2.8 Sample θ∗∗ from K(t)(θ∗∗|θ∗,m∗∗).

2.9 If pM(m∗∗)π(θ∗∗|m = m∗∗) = 0 return to step 2.5.

2.10 Simulate data x∗ conditional on (m∗∗, θ∗∗) and compute s∗ = S(x∗).

2.11 If d(sobs, s
∗) > ht return to step 2.1.

2.12 Set m
(t)
i = m∗∗, θ

(t)
i = θ∗∗ and

wi =

{

1 if t = 1

pM(m∗∗)π(θ∗∗|m∗∗)/(S1S2) otherwise,

where S1 = (1− α)
∑

i|m
(t−1)
i

=m∗∗

w
(t−1)
i + α

∑

i|m
(t−1)
i

6=m∗∗

w
(t−1)
i K(t)(m∗∗|m

(t−1)
i )

and S2 =

∑

i|m
(t−1)
i

=m∗∗
w

(t−1)
i K(t)(θ∗∗|θ

(t−1)
i ,m∗∗)

∑

i|m
(t−1)
i

=m∗∗
w

(t−1)
i

.

2.13 End loop.

3 Let w
(t)
i = wi/

∑N
i=1 wi for 1 ≤ i ≤ N .

4 End algorithm if stopping condition reached.

5 Increment t by 1, calculate ht and return to step 2.

Tuning choices The C. jejuni application in the main paper used α = 0.1 and

N = 1000. The main text details the choice of d(·, ·), stopping condition and rule

to update the threshold. The model update kernel K(t)(·,m) places equal weight on

all models k 6= m such that
∑

i|m
(t−1)
i

=k
w

(t−1)
i > 0. The parameter update kernel
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K(t)(·|θ,m) is the density of N(θ, 2Λ
(t)
m ) where Λ

(t)
m is a diagonal matrix composed

of sample variances of the parameters conditional on model m calculated from the

t− 1th particle estimate. This choice follows Beaumont et al. (2009).
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2 Genetic summaries

The section details the genetic summaries of a MLST dataset used in the C. jejuni

application. There are two groups, summaries of the entire data, and summaries

relating to a single locus. Summaries which are starred are those used in the pilot

analysis. To keep dim(S) reasonably low in the pilot, starred entries in the locus

summaries were summarised by the mean and variance over all seven loci. For the

main analysis, summaries for every locus were used as regression covariates. We

considered two ways to order these: by locus identity, or by magnitude. Both orderings

were used, so each locus summary listed below contributes 14 summaries. This gives

a total of 15 statistics used in the pilot and 125 used as regression covariates.

Global summaries

Single locus variants (SLVs)* The number of unordered pairs of isolates in

which exactly one allele differs (Feil et al., 2004).

Mean SLV site differences* For any pair of isolates the number of nucleotides

which differ can be calculated. This number is calculated for every pair of

isolates in which exactly one allele differs (i.e. those which are counted as an

SLV), and the mean of these values taken.

Unique sequence types (STs)* The number of unique STs within the dataset.

Max ST frequency* The maximum frequency of any ST in the dataset.

Mean ST frequency* The mean frequency of all STs in the dataset.

Mean allele differences* For any pair of isolates the number of alleles which

differ can be calculated. This is calculated for every unordered pair of isolates

and the mean taken.
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ST heterozygosity A heterozygosity-like summary of ST frequencies u1, . . . , ud:

1−
∑d

i=1 u
2
i .

ST entropy Shannon entropy of ST frequencies:
∑d

i=1 ui log ui.

STs with frequency 1/2/3/4/> 4 The number of STs with the given fre-

quency.

Locus summaries

Segregating sites* The number of nucleotides which are not constant for all

alleles.

Mean site differences* For any pair of isolates the number of nucleotides in

the locus of interest which differ can be calculated. This is calculated for every

unordered pair of isolates and the mean taken, as in Tajima (1983).

Number of alleles* The number of unique alleles.

Maximum allele frequency* The maximum frequency of any allele.

Mean allele frequency* The mean frequency of all alleles.

Allele heterozygosity A heterozygosity-like summary of allele frequencies

v1, . . . , vd: 1−
∑d

i=1 v
2
i .

Allele entropy Shannon entropy measure of allele frequencies:
∑d

i=1 vi log vi.

Linkage disequilibrium* This is based on the Hedrick (1987) D′ summary of

linkage disequilibrium between a pair of loci. The statistic used is the mean of

D′ values between the locus of interest and the others.
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3 Parameter inference results

Results Table 1 gives point and interval parameter estimates, and Figures 1 and

2 show estimated marginal posteriors. The table includes results from applying the

regression adjustment of Beaumont et al. (2002) to model 1 output. This was not

applied to other models as there were too few accepted particles to expect it to be

stable. The most notable finding is the low estimate of recombination rate, discussed

below. Additionally, informative estimates are made for mutation rate and relative

growth. The latter concentrates on low values, providing further evidence against

significant growth. Sensitivity analyses detailed later (Section 9) support these find-

ings qualitatively, although the numerical values are less robust than those for model

choice.

Discussion Our point estimates of recombination rate are somewhat smaller than

those of Wilson et al. (2009), who performed a similar ABC analysis on a different

dataset. Furthermore the credible intervals are much narrower, and exclude the esti-

mates of Fearnhead et al. (2005), Biggs et al. (2011) and Yu et al. (2012), who find

recombination and mutation rates to be of the same order of magnitude. The discrep-

ancy with Wilson et al. (2009) is conceivably due to their use of a heavy tailed prior or

ABC tuning differences such as choice of threshold. The others suggest differences in

the model or data used. For example, as discussed by Yu et al. (2012), their analysis,

and that of Biggs et al. (2011), is for closely related sequences, and may reveal a high

level of recombination that is then removed by purifying selection. The results for

mutation rate and mean length of recombination tract are comparable to those from

other work.
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Recombination rate Mean track length Mutation rate Relative growth
kb−1(2Neg)−1 kb kb−1(2Neg)−1

Prior
Model 1 1.31 [0.03, 51.5] 4.52 [0.1, 209.9] 13.7 [8.1, 23.2]
Model 2 1.31 [0.03, 51.5] 4.52 [0.1, 209.9] 13.7 [8.1, 23.2] 4.06 [1.5, 10.8]
Model 3 1.31 [0.03, 51.5] 4.52 [0.1, 209.9] 13.7 [8.1, 23.2] 33.1 [2.9, 383.8]

Pilot

Model 1 0.34 [0.02, 5.21] 2.43 [0.06, 88.2] 11.4 [7.63, 16.7]
Model 1 (adjusted) 0.18 [0.02, 1.87] 1.04 [0.05, 24.8] 12.8 [10.2, 16.7]

Model 2 0.28 [0.02, 2.45] 1.99 [0.09, 24.1] 12.6 [8.76, 17.2] 2.12 [1.07, 3.07]
Model 3 0.17 [0.01, 0.78] 1.58 [0.08, 94.9] 12.2 [8.80, 15.1] 4.81 [0.97, 19.0]

Main

Model 1 0.55 [0.02, 3.74] 5.81 [0.17, 239.2] 12.9 [10.1, 16.5]
Model 1 (adjusted) 0.22 [0.02, 1.18] 2.98 [0.22, 63.2] 13.0 [10.6, 15.9]

Model 2 0.24 [0.01, 3.53] 5.73 [0.52, 239] 14.0 [11.6, 16.5] 1.51 [0.85, 2.71]
Model 3 0.34 [0.01, 3.37] 3.08 [0.40, 128] 12.6 [9.81, 16.4] 1.12 [0.41, 2.44]

Table 1: Parameter point estimates (geometric means) and 95% credible intervals
from prior and ABC analyses on C. jejuni data.
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Figure 1: Kernel density estimates of marginal posteriors for the growth parameter
(i.e. ratio of final population size to initial population size), from analysis of C. jejuni
data. Weighted density estimates were formed from ABC output from the pilot (red)
and main (blue) analyses. Prior densities are also shown (black). The graphs show
results conditional on the 2 models allowing growth. The density estimates were
computed and plotted on a log scale, but the x-axes are labelled in the original units
for ease of interpretation.
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Figure 2: Kernel density estimates of marginal parameter posteriors, excluding rela-
tive growth, from analysis of C. jejuni data. Weighted density estimates were formed
from ABC output from the pilot (red) and main (blue) analyses. Prior densities are
also shown (black). The rows represent output conditional on the 3 different mod-
els, and the columns different parameters. The density estimates were computed and
plotted on a log scale, but the x-axes are labelled in the original units for ease of
interpretation.
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4 Influence of genetic summaries on the pilot anal-

ysis

Output of the pilot analysis of C. jejuni data was used to perform a detailed in-

vestigation of the qualitative fit of the models to the data, as follows. The SMC

algorithm provides weights for each (M, θ, S(x)) output triple. Following Ratmann

et al. (2009), we summarise the resulting marginal distributions of each component

of S in Figure 3. Note that models 2 and 3 produced small effective sample sizes,

so their distributions, particularly the extremes, are less well estimated. Nonetheless,

the results show that several statistics were hard to fit for models 2 and 3. In par-

ticular, the number of mean SLV site differences was hard to fit under any model –

only four simulations were above the observed value, all produced by model 1. To

determine whether fitting this particular statistic dominated the results, we reran the

pilot analysis without it and found similar results (model 1 85%, model 2 8%, model

3 6%). Models 2 and 3 also poorly fitted the mean frequency of sequence types and

number of unique sequence types. Finally, all models tended to produce more SLVs

than the observed data, which may indicate model misspecifation.

A similar investigation was attempted for the main analysis. Here it was only

possible to consider the fits of the 7 summary statistics produced by fitting regressions.

No interesting results were found; all models were capable of producing each observed

summary statistic.
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Figure 3: Marginal distributions of summary statistics from the pilot analysis output.
The box plots show quartiles computed from weighted samples. Horizontal lines show
the observed summary statistics.
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5 Structure of fitted regressions

This section assesses the informativeness of the genetic summaries to the regressions

used in semi-automatic ABC.

Methods A crude assessment of informativeness of covariates can be made from

their influence on the fitted predictors, as follows. Consider first a general fitted

linear regression θ̂ = a +
∑p

j=1 bjxj. A measure of the influence of the jth covariate

is bj(Var xj)
1/2, the regression coefficient of the normalised covariate xj/(Var xj)

1/2.

Recall that each of our summary statistics is of the form Si(x) = hi(β
T
i fi(x)). We

can write the linear combination as

βT
i fi(x) =

p
∑

j=1

3
∑

k=1

βijkgijk(tj(x)),

where tj(x) is the jth genetic summary, and gij1, gij2, gij3 are three spline basis func-

tions calculated for tj(x) from the simulated data (The dependence on i is because

this can determine which simulated data is used.) Let

αij = max
k

|βijk[Var gijk(tj(x))]
1/2|,

where sample variance over the relevant training data is used. The αij value is the

maximum in magnitude of the coefficients for the normalised functions of summary

tj. In this section we report a relative informativeness statistic,

α′
ij = 100αij/max

j
αij .

The α′ statistic is used to report the most informative genetic summaries for each

regression in Table 2, and mean informativeness values in Table 3. Table 2 also

reports an estimate of the quality of out-of-sample fit for each regression, based on
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cross-validation. For the four continuous parameters this is a root mean squared stan-

dardised error (RMSSE) i.e. root mean squared error of responses standardised to have

variance 1. Standardisation allows comparison of the relative quality of the regres-

sions. A constant estimate of the parameter mean would achieve 1. For model choice

the deviance is given i.e. −2 times the log of the expected likelihood contribution for

a single new observation. Here 0 equates to perfect prediction and −2 log 0.5 ≈ 1.39

to always predicting equal model weights.

Results Tables 2 and 3 show that genetic summaries involving counting nucleotide

differences are the most informative overall and for each individual regression except

mean track length. In particular, the largest in magnitude of the mean site difference

values for individual loci had an α′ value nearly twice that of the next statistic in 3

regressions. Also of interest is that the regressions targeting the growth parameter

and distinguishing between models 2 and 3 were the least informative, while targeting

the distinction between a growth and non-growth model was more successful.
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Target RMSSE Deviance Genetic summary α′

Recombination rate 0.64

Mean SLV site difference 100
Linkage disequilibrium (glyA 4) 69
Segregating sites (magnitude 1) 67
Linkage disequilibrium (gltA 3) 57
Segregating sites (magnitude 2) 56

Mean track length 0.69
Linkage disequilibrium (uncA 7) 100
Linkage disequilibrium (aspA 1) 94

Mean SLV site difference 55

Mutation rate 0.60

Mean site differences (magnitude 1) 100
Mean site differences (magnitude 2) 99

Mean SLV site differences 68
Segregating sites (magnitude 6) 65

Mean site differences (magnitude 4) 64
Segregating sites (magnitude 3) 61

ST heterozygosity 54
Segregating sites (magnitude 2) 53
Segregating sites (magnitude 1) 53

Relative growth 0.85
Mean site differences (magnitude 1) 100
Mean site differences (magnitude 2) 59

Model 1/2 0.69

Segregating sites (magnitude 1) 100
ST heterozygosity 86

Mean SLV site differences 71
Mean site differences (magnitude 4) 66

Mean freq (magnitude 7) 50
Model 2/3 1.25 Mean site differences (magnitude 1) 100

Model 1/3 0.46

Mean site differences (magnitude 1) 100
Segregating sites (magnitude 1) 59

Mean site differences (magnitude 4) 54
Mean site differences (magnitude 3) 52

Table 2: Exploratory summaries of regressions used by semi-automatic ABC to fit S.
A cross-validation estimate of the error is shown for each regression. Also reported
are the genetic summaries with largest relative influences α′ in each regression. All α′

values > 50 are reported. Details of the summaries are given in Section 2. For locus
based summaries ordered by magnitude, 1 represents the largest magnitude and 7 the
smallest.
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Genetic summary group Mean α′

Mean allele differences 1
Max ST frequency 2
Mean ST frequency 5

Linkage disequilibrium (magnitude) 5
Unique STs 5

Allele entropy (locus) 5
Allele heterozygosity (locus) 5

Max ST frequency 6
Unique STs 6

Allele heterozygosity (magnitude) 6
Number of alleles (magnitude) 7

Maximum allele frequency (magnitude) 8
Mean allele frequency (magnitude) 10

Alleles entropy (magnitude) 11
Segregating sites (locus) 11
Number of alleles (locus) 12

Mean ST frequency 13
Linkage disequilibrium (locus) 14

ST entropy 14
Mean site differences (locus) 15

SLVs 19
ST heterozygosity 20

Segregating sites (magnitude) 21
Mean site differences (magnitude) 29

Mean SLV site differences 54

Table 3: Mean relative influence values for each group of genetic summaries as detailed
in Section 2. For global summaries, the mean across all regressions is reported. For
local summaries, we report two results for each group; one when ordered by locus
identity and another for magnitude ordering. In each case we take the mean across
all regressions and across each of the 7 summaries in the group.
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6 Regression modelling choices

This section investigates various choices made in the regressions to produce summary

statistics for the C. jejuni application. To perform the investigations the method of

Section 6.2 in the main text was used to simulate 2× 104 data sets from the training

region. This was used to investigate the change in regression fit as several modelling

choices were varied.

Number of isolates Data sets with 200 isolates were simulated, and regressions

performed using f(x) calculated from n = 10, 20, . . . , 200 isolates. The regressions

and calculation of f(x) were otherwise performed as in the main text. Figure 4 plots

n against cross-validation estimates of the regression error (described in Section 5).

Regression error is shown to decrease with n, but at a decreasing rate; reduction in

error is roughly proportional to increase in log n.

The choice of n = 100 in the main text is pragmatic, based on the computing

time available. This analysis confirms that gains in regression quality are possible by

increasing n but are increasingly costly (as time to simulate a dataset was found to

be roughly linear in n).

Pooling Regression fitting for continuous parameters as described in Section 6.2

of the main text was repeated using a) combined simulated data and b) simulated

data from an individual model. As in the main text, combined simulated data means

data from all models, except for the growth parameter regression where it is data

from all models with growth. Approach b) was performed for each model, with

the exception that the growth parameter regression could not be performed for data

from the no growth model. For each fitted regression, predictions were computed for

all simulated data sets. For every parameter, Pearson correlation coefficients were

calculated between each sequence of predicted values. All were above 0.88. This
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exploratory analysis shows that for any given parameter the predictions produced

by different fitted regressions are close to linear transformations of each other. This

suggests they will therefore behave similarly as components of S in an ABC algorithm

and justifies using a single parameter estimator for each parameter in S produced via

approach a).

Data transformation Regression fitting as in the main text was repeated using

various choices of data transformation f(·). We considered transformations of the

form f(x) = (1, f1(x), f2(x), . . . , fn(x)) which are the concatenation of a constant

term and several vectors of transformations. For polynomial f(·), fi(x) is formed by

taking element-wise ith powers of x. For spline f(·), a B-spline basis of order n is

calculated for each component of x, with knots given by quantiles of simulated values,

and fi(x) is formed by taking element-wise ith basis function values for x.

Table 4 shows estimates of the quality of out-of-sample fit based on cross-validation,

as in Section 5. The results shows that the final choice of splines with n = 3 is close to

the best for each regression, although the improvement in fit compared to f(x) = (1, x)

is modest.

f(·) type n
Recombination Mean tract Mutation Relative

Model 1/2 Model 2/3 Model 1/3
rate length rate growth

Polynomial 1 0.672 0.722 0.628 0.870 0.728 1.270 0.507
Polynomial 2 0.660 0.692 0.617 0.854 0.735 1.246 0.484
Polynomial 3 0.654 0.689 0.607 0.854 0.740 1.250 0.519
Polynomial 4 0.648 0.688 0.611 0.858 0.739 1.251 0.522
Spline 2 0.656 0.691 0.612 0.852 0.708 1.249 0.477
Spline 3 0.638 0.681 0.609 0.848 0.703 1.243 0.472
Spline 4 0.638 0.680 0.606 0.851 0.703 1.247 0.471

Table 4: Cross-validation estimates of regression quality for various choices of f(·).
For continuous parameters the figures are estimates of root mean squared error of
responses standardised to have unit variance. For model choice regressions an estimate
of the deviance is given.
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7 Sensitivity analyses

7.1 Prior sensitivity

This section details ABC analyses for the C. jejuni application under alternative

parameter priors. These investigate whether our model choice results are robust to

prior assumptions. The alternative priors considered are summarised in Table 5. The

single alternative prior for biological parameters (i.e. all except relative growth) aims

at being less informative (labelled as “uninformative” in tables below, which used in

a relative sense only) while avoiding placing weight on parameter values which cause

long simulation times. We consider two alternative demographic priors. The first

gives both growth models equal prior relative growth variance, and the second has

equal relative growth priors, leaving the start date of growth as the only difference.

These investigate the relative effects of the growth prior and start date of growth on

the results. There are a total of 6 combinations for the prior, including that used in

the main paper.

Log normal
Parameter Units Model Description Point estimate 95% CI Mean Sd

Mutation rate kb−1(2Neg)−1 All Informative 13.7 [8.1, 23.2] 2.62 0.27
Recombination rate kb−1(2Neg)−1 All Informative 1.31 [0.03, 51.5] 0.27 1.87
Mean track length kb All Informative 4.52 [0.1, 209.9] 1.51 1.96

Mutation rate kb−1(2Neg)−1 All Uninformative 2.72 [0.007, 973] 1 3
Recombination rate kb−1(2Neg)−1 All Uninformative 2.72 [0.007, 973] 1 3
Mean track length kb All Uninformative 2.72 [0.007, 973] 1 3
Relative growth 2 Original 4.06 [1.5, 10.8] 1.40 0.50
Relative growth 3 Original 33.1 [2.9, 383.8] 3.50 1.25
Relative growth 2 Equal variance 4.06 [1.5, 10.8] 1.40 0.50
Relative growth 3 Equal variance 33.1 [12.4, 88.2] 3.50 0.50
Relative growth 2 Equal 7.39 [2.7, 19.7] 2 0.50
Relative growth 3 Equal 7.39 [2.7, 19.7] 2 0.50

Table 5: Details of several choices of parameter priors used to investigate prior sen-
sitivity. Prior densities are assumed to be the product of log normal densities for
each individual parameter. The points estimates are geometric means. In all cases
the mean track length prior was truncated below 1 base, and the recombination rate
above 25 kb−1(2Neg)

−1 to avoid excessively slow simulations.

We repeated the analysis of Section 6.2 of the main text for each choice of prior.

The model choice results are given by Table 6. In all cases, the no growth model
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retains the greatest weight, which is over 80% for the main analyses. There are

no clear effects of particular prior choices as these vary between the pilot and main

analyses.

Parameter estimates under the no growth model are summarised by Table 7 and

are more variable. In particular, credible intervals are wider for the less informative

biological prior, showing that the influence of prior information is reasonably strong.

Biological prior Demographic prior Analysis Model 1 Model 2 Model 2
Informative Original Pilot 0.86 0.11 0.04
Informative Equal variance Pilot 0.64 0.19 0.17
Informative Equal Pilot 0.92 0.00 0.07
Uninformative Original Pilot 0.68 0.17 0.16
Uninformative Equal variance Pilot 0.66 0.18 0.16
Uninformative Equal Pilot 0.63 0.11 0.26
Informative Original Main 0.92 0.03 0.05
Informative Equal variance Main 0.91 0.08 0.00
Informative Equal Main 0.83 0.16 0.00
Uninformative Original Main 0.95 0.04 0.01
Uninformative Equal variance Main 0.96 0.04 0.00
Uninformative Equal Main 1.00 0.00 0.00

Table 6: Estimated posterior model probabilities from ABC analyses on C. jejuni

data with various prior choices.

Biological prior Demographic prior Analysis
Recombination rate Mean tract length Mutation rate

kb−1(2Neg)−1 kb kb−1(2Neg)−1

Informative Original Pilot 0.34 [0.02, 5.21] 2.43 [0.06, 88.2] 11.4 [7.63, 16.7]
Informative Equal variance Pilot 0.31 [0.00, 4.95] 1.77 [0.00, 78.9] 11.3 [7.35, 16.7]
Informative Equal Pilot 0.44 [0.02, 5.10] 2.93 [0.01, 111] 12.0 [8.00, 17.6]
Uninformative Original Pilot 0.24 [0.00, 13.2] 1.14 [0.01, 504] 6.20 [2.24, 17.5]
Uninformative Equal variance Pilot 0.28 [0.00, 11.5] 0.98 [0.00, 524] 6.67 [2.17, 19.1]
Uninformative Equal Pilot 2.66 [0.22, 19.5] 11.7 [0.40, 1476] 14.4 [4.50, 60.8]
Informative Original Main 0.55 [0.02, 3.74] 5.81 [0.17, 239] 12.9 [10.1, 16.5]
Informative Equal variance Main 0.30 [0.01, 3.62] 1.51 [0.06, 53.7] 12.8 [9.87, 16.3]
Informative Equal Main 0.50 [0.02, 5.09] 3.44 [0.09, 75.3] 12.9 [9.80, 16.3]
Uninformative Original Main 0.37 [0.00, 8.63] 2.05 [0.01, 526] 13.5 [9.00, 19.7]
Uninformative Equal variance Main 0.37 [0.00, 7.47] 1.60 [0.01, 448] 13.9 [9.40, 19.8]
Uninformative Equal Main 0.47 [0.06, 3.98] 8.77 [0.26, 1084] 13.9 [5.91, 25.4]

Table 7: Parameter point estimates (geometric means) and 95% credible intervals
from ABC analyses on C. jejuni data under a no growth model with various prior
choices.

7.2 Subsample sensitivity

In the analysis of the main paper a subsample of 100 isolates were used as the ob-

served data. This section investigates the effect of choosing a different subsample.
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The cost of repeating the full analysis would be infeasible, so instead an importance

sampling approach was used. Subsampling was performed 1,000 times, and sum-

mary statistic vectors s1, s2, . . . , s1000 computed, using S(·) as in the main analysis.

A sample of 104 particles was drawn as in steps 2.1 to 2.10 of the SMC algorithm

in Section 1, based on resampling the final weighted particle estimate from the main

analysis. Importance weights were calculated as in step 2.12. Then for each si the

1000 particles (M, θ, S(x)) minimising d(S(x), si) were selected, and the weights of

these renormalised to sum to 1. This produces a weighted particle estimate of 1000

particles for each subsample of data.

Figure 5 shows the results for s1, . . . , s1000. The range for the effective sample

size was [196, 683] and for h was [0.39, 1.37], compared to the final choice of 0.6 in

the main algorithm. This suggests that importance sampling has worked reasonably

well. All subsamples place over 90% weight on model 1. However the parameter point

estimates under model 1 are less consistent. In particular, the mutation rate estimates

vary over the range [9.5, 17.8], which is wide in comparison with the confidence interval

of [7.6, 16.7] found in the main text.

Three further subsamples of 100 isolates were taken from particular hosts: hu-

mans, ruminants and poultry, producing shuman, sruminant and spoultry. The impor-

tance sampling approach worked less well here, with larger h values required for each

of these samples, suggesting these data samples are qualitatively different to the oth-

ers. Therefore the full analysis was repeated for each subsample, which resulted in

over 80% weight on model 1 in each case. The differences in the data do not support

the growth models in this analysis, but do suggest a need to take host population

structure into account in future modelling.
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Figure 5: Histograms of the estimated probability of model 1 and parameter point
estimates resulting from analyses of 1000 random subsamples of 100 C. jejuni isolates.
The model weights are shown following truncation correction, and the parameter
estimates are taken from model 1. No post-processing is applied. The dotted lines
show the estimates from the main ABC analysis in the main text.
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8 Consistency test

This section details an implementation of the method of validating summary statistics

of Marin et al. (2013). This method has the aim of showing that the summary

statistics produce consistent model choice output in an asymptotic regime of highly

informative data. In the C. jejuni application, this corresponds roughly to a large

number of isolates.

The method involves simulating L times from the posterior predictive of S under

each model and testing whether the summary statistic sample means differ signifi-

cantly. A significant difference suggests consistency. We take L = 500 as in Marin

et al. (2013). The ABC SMC results have too few particles from models 2 and 3

to estimate the posterior predictive well, so we perform a separate ABC rejection

sampling analysis under each model. Each of these analyses used 104 simulated (θ, x)

pairs, and accepted 500. For each accepted θ, a dataset x′ was simulated from x|θ

and S(x′) calculated. This method was performed twice, once using S as in the pilot

analysis, and once as in the main semi-automatic ABC analysis. In each case, the

same choice of S was used in the rejection sampling steps and the final comparison

step. In both cases, the test showed a highly significant difference, with a p-value of

less than 10−40.
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